Coloniatecne – Final Install with Interactive Lighting

Photos and Video by Ripon Deleon


Coloniatecne – Progress

Coloniatecne – Day 4

Fabripod Configurator Mockup is Live!


 posted by Chris Chalmers, Fabripod 

Fabripod configutator mockup

This is a mockup of the lamp configurator I’m putting together for Fabripod, the company I’m starting that sells lamps. The mockup opens in a new window. Use the sliders on the left to control options like scale and materials. The resulting size and price is shown on the right. You cant buy laps with this configurator yet so the “make it” button doesn’t do anything yet. This is currently tested and working in firefox on both mac and windows. Its  working in chrome on windows, but not on mac (at least not on mine).

I’m still working out the kinks in the back end, so the pricing is not accurate yet. Stay tuned for the official release coming up soon! If you absolutely need to buy an Urchin lamp right now, check out the one size available in the Ponoko store!

Cabinet Wall Generator


 posted by Chris Chalmers, Fabripod 

This is a fun project I did for a friend who wanted to design a wall of cabinets with an integrated work surface. This definition takes lines on the ground as input and helps to compose a wall of individual doors, with sizes that you specify. Then it  projects a pattern be CNC cut into the doors. (cut it at Techshop or with 100k garages!)The pattern comes from an image that you add yourself so it could be anything. The example below used a photo of some shadows on the ground.

download the grasshopper file and rhino base file here

ColoniaTecne Approved for Design Development-Invited To Group Exhibition in Seattle Gallery

BIOS Design Collective was invited to present some recent work and we thought this would be a great opportunity to share our latest design of ColoniaTecne our project that will be in the San Jose 2012 Biennial. This is one of the boards created for the group show at The Art On The Ridge Gallery in Seattle Washington. The project is an interactive pavilion that will engage the public through site and sound. The person experiencing the project will move through a “net” of sensors that interpret movement, sound and proximity and re-interpret that information as a display of light and sound. ColoniaTecne will react to its environment and create a new environment through interpretation, there by changing the paradigm of a typical structure from environmental control to environmental responsiveness. This project takes systemic cues from the cooperative nature of corral reefs. In corral reefs many individuals work in unison (coral polyps) to create the overall reef. Each individual responds to environmental factors that affect the final reef structure. Environmental factors include heat, light, food etc.

Latest renderings of the the project showing a more detailed understanding of connections and construction.

Two scaled models were also made for the exhibition. These models show our latest idea about structural bracing throughout the form. The waffle system is doubled with one on top of the other creating a triangulation between the two systems. This allows us visual complexity through simple design principles.

BIOS shortlisted in Trash-to-Treasure competition


 posted by Chris Chalmers, Fabripod 

A project designed and built by BIOS has been shortlisted in a competition called trash-to-treasure, put on by a group at RGU in Aberdeen called Tesseract!


Here’s the competition brief:
“We are asking you to design something beautiful and useful that uses material that are otherwise thrown away. How can your design change people’s attitude towards what is rubbish, and what we waste? We are looking for a creative and imaginative response, where new and innovative uses are found for items which are considered worthless. Being able to design using wasted materials can transform communities who have barely anything, so we would love to see your ideas, however crazy they might be.”

This project is described in More detail here:

SJ01- New Conceptual Pavillions

This is new iteration for our ongoing study into ColoniaTechne. The project that was selected to be in the SJ01-2012 art exhibition. In this first study I was thinking that the pavilion could be made out of strands of some inexpensive, durable and fully recyclable material. The members would take the compression and tension like a net or membrane structure. This would have the advantage of being light and hopefully strong.

This was made in grasshopper through the blending of a couple of simple definitions. First there is the surface from curves, then Diagrid from surface and the image sampler, and lastly project to surface. The idea being that the circles represent interactive components on the skin of the pavilion, and that skin and component relationship can be adaptive to differing criteria.


the next test is really geared towards a larger project or venue. Last year Charlie and I got to the final round of a competition for  Denver International Airport. Although we didn’t win (we lost by 1 point!) it started me thinking about larger scale projects with different criteria for aesthetic evaluation. This is a study of a sculptural installation based on the work of Erwin Hauer. The diffuse light qualities and the structural integrity of the overall piece are something pulled from investigations into Hauer’s work. 

AIASF Parametric Canopy Install Photos


 posted by Chris Chalmers, Fabripod 

see more photos at our flickr site!


the cable mesh was designed using a grasshopper definition that Chris wrote to calculate resultant vectors for all the backstays, and output cable lengths to an excel spreadsheet.

ScreenHunter_02 Sep. 15 00.45


volunteers used these laminated cards to arrange the cups on the canopy in an algorithmic pattern…P9110012

which actually worked out pretty well!





Plank Lines


posted by Chris Chalmers

ScreenHunter_04 Jul. 21 20.19

ScreenHunter_02 Jul. 20 22.48

This is an exploration of  geodesic curves and their use in the  fabrication of free form shapes. For this study, I adapted a grasshopper definition by Lorenz Lachauer of  Eat-a-Bug. Geodesic curves are defined as the shortest path between two points along a curved surface. This has some connotations for structural efficiency, however the interesting thing for me is that when unrolled, the lines are perfectly straight. Linear components are beneficial in two ways: first, they can be nested efficiently on sheet material (see the strips laid out above). Second, you don’t need fancy CNC machinery to fabricate them. All you need to do it manually is a set of dimensions: lengths of strips and distances between their attachments.

download the grasshopper definition : TurtleTest5.ghxpaper model

Buckminster Fuller’s domes popularized  Geodesic geometry, but they are only half the story. More varied versions have been used by Frei Otto,  Shigeru Ban and HUT Wood Studio.



The examples above use a large number of regularly placed start points. The example below, perhaps more interesting, used fewer start points but allowed the strips to wrap around the surface a few times. If we change the location of the start points and the angle of the strips, this could be used to concentrate material in key places, making  structure more responsive than a regularized mesh. Obviously lots more to explore here.

ScreenHunter_01 Jul. 20 21.50


download the grasshoper definitionttp://

Working with Found Objects


posted by Chris Chalmers

More often than not, new parametric component-based designs rely on custom fabricated pieces for their construction. Their form is allowed to be free-flowing only because the individual pieces vary dimensionally to accommodate. However, the use of re-used or recycled materials often means working with fixed dimensions.  Some of my current work  involves negotiating free-form designs using either found objects, or stock items which are available only in a finite number of sizes.


This project uses translucent plastic cups, attached to a laser-cut cardboard substructure. cupwall-1

The mockup below was made with actual beer cups from a party (They have been washed).


cupwall-1_6cups-5Tcupwall-1_4he corrugated cardboard ribs have  attachment clips laser-cut into their profiles.

The cups are also held- together with the plastic clips used in the mockup, which are  laser-cut from acrylic sheet.

Tile Wall

This project attempts to create surface with variable texture using a fixed module. We began with FOA’s use of moon-shaped pavers in their South East coastal park project because they adapt well to the compound curvature of the surface.IMG_2792 Our project  uses hexagons tilewall_11 (2) in order to accentuate the pattern formed between the tiles as their spacing is varied. tilewall_40As the spacing increases, a second system is introduced between the tiles: small square windows. The idea here is that the tiles could gradually dissapear as their spacing increases, giving way to more glass in an Escher-esque transformation.


Ctilewall_11 (2)upWalltilewall_11 (2)tilewall_2tilewall_40



Bamboo Burner Tent

post by Chris Chalmers

I just returned from burningman (yup, another burner in SF)

While there, I bravely (rashly?) sheltered myself (and my extended family) in what was really nothing more than a thinly disguised material test for a previous studio project. I designed this tent using a script I wrote for Rhino that modeled bamboo hoops in a cross-braced lattice pattern (download it here).

the bamboo was held together using heavy duty zip-ties..

The bamboo’s ends were slid over 1/2″ bolts attached to unistrut at 2 foot intervals. The unistrut was staked to the ground with 2′ long pieces of rebar. Velcro strips were glued to the unistrit with epoxy (hard to see because of dust), and held down the bottom of the canvas cover.
Here’s what the inside looked like: decorated by my wife and her mom. Notice the vent holes opened in the velcro joint between canvas strips @ left. Velcro attachment of the canvas made it possible to open up vents almost anywhere. Handy, but was also our eventual undoing because they let in too much dust.