Disoriented Strands


 posted by Chris Chalmers, Fabripod 


This project is an exploration of Statics vs. Statistics. That is to say it is a refutation of the ideal “truss” structure, which is statically determinate, in favor of alternatives based on a logic of statistical probability. While the logic of the truss is very efficient, it is not necessarily the most effective for unpredictable load patterns. The statistical approach, in which material is allocated according to where stress is most likely to occur, is closer to the structural logic that has evolved in living systems.

Fiber structures are common in Nature. Monodirectional structures such as bones or tree trunks use oriented fibers to resist axial loads . Multidirectional structures, like those shown below, use fibers in a random pattern to resist multiple loads. They often act as membranes because they can deform without  breaking.  Their resiliency  is due, in part, to the redundancy of their overlapping members.

melon rind
type I collagen

These structures are called statically indeterminate because it is  impossible to determine the load path using statics: the hand calculations that have been used by structural engineers since the 1800’s. Today we have computers and nonlinear analysis to solve for complex structures, but buildings are still designed and constructed in terms of  the old methods.  In the words of Karl Chu: “Architecture has still yet to incorporate the architecture of computation into the computation of architecture” *

The goal of this project is to create a building method that  relies on redundancy and statistical probablity as a structural  logic instead of efficiency and static determinacy.   I used  Grasshopper to create a randomized fiber membrane on a base surface in the following steps:

ScreenHunter_06 Oct. 22 10.29

First, points are located on the surface using a probability algorithm in which areas of  higher curvature are more likely to be populated (surface is color-coded for gaussian curvature in these screenshots). This should yeild a higher density of material in those areas.

ScreenHunter_08 Oct. 22 10.45
Next, the points are used as origins for randomly oriented strips of material based on “plank line” geometry (see earlier post), which conforms to the curvature of the surface but can be fabricated using perfectly straight strips of  material.

ScreenHunter_09 Oct. 22 11.33

Finally, the length of the strips  is set to achieve the proper overlap. Individual strip lengths adjust to curvature as well: shorter pieces where curvature is more intense. Holes are placed at the intersections for attachment and the strips are unrolled for fabrication.

This project is designed to address structural requirements in a statistical manner rather than a determinant one. That is to say without exhaustive analysis of the stresses in each member. As in many living systems, more material is allocated where more stress is most likely to occur, and where more strength is needed to maintain the surface’s intended shape.

This method could be modified by adding structural analysis of the base surface instead of simple curvature analysis.  Finite element analysis programs like NASTRAN or ANSYS will analyze a simple shell and output a deformation map similar to the curvature map shown here. All that is needed is to apply the bitmap to the surface, then vary point density by color, rather than by the native curvature graph.

ScreenHunter_05 Oct. 22 10.17 basket

*For an insightful analysis of design/construction paradigms in flux,  see Karl Chu’s essay: “The Metaphysics of Genetic Archtecture” in Arquitecturas Geneticas-II

melon rind

2 thoughts on “Disoriented Strands

  1. Dear
    My name is Bojan Milan
    i have the same inquiry, question appeal

    Hello, this definition and your process is very interesting. Are you able to post a copy of this definition??


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s